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In this paper, the solution of the Riemann Problem for the one-dimensional, free-surface
Shallow Water Equations over a bed step is analyzed both from a theoretical and a numer-
ical point of view. Particular attention has been paid to the wave that is generated at the
location of the bed discontinuity. Starting from the classical Shallow Water Equations, con-
sidering the bed level as an additional variable, and adding to the system an equation
imposing its time invariance, we show that this wave is a contact wave, across which
one of the Riemann invariants, namely the energy, is not constant. This is due to the fact
that the relevant problem is nonconservative. We demonstrate that, in this type of system,
Riemann Invariants do not generally hold in contact waves. Furthermore, we show that in
this case the equations that link the flow variables across the contact wave are the General-
ized Rankine–Hugoniot relations and we obtain these for the specific problem. From the
numerical point of view, we present an accurate and efficient solver for the step Riemann
Problem to be used in a finite-volume Godunov-type framework. Through a two-step pre-
dictor–corrector procedure, the solver is able to provide solutions with any desired accu-
racy. The predictor step uses a well-balanced Generalized Roe solver while the corrector
step solves the exact nonlinear system of equations that consitutes the problem by means
of an iterative procedure that starts from the predictor solution. In order to show the effec-
tiveness and the accuracy of the proposed approach, we consider several step Riemann
Problems and compare the exact solutions with the numerical results obtained by using
a standard Roe approach far from the step and the novel two-step algorithm for the fluxes
over the step, achieving good results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In many practical problems involving free-surface shallow-flows, the effects of bed discontinuities on hydrodynamics are
key features that a good numerical model must be able to deal with, achieving the same level of accuracy as elsewhere. We
are not talking about discontinuities deriving from the discretization of the bed elevation, but about all the real discontinu-
ities that can be found in overland flows: dams, check-dams, sills and any other obstacle that can act as a bed step (e.g.
vertical underpasses, walls, and so on). In particular, we are interested in dealing with this problem in the framework of
finite-volume, Godunov numerical schemes. Since the key ingredient of this approach consists in finding the exact or approx-
imated solution of a Riemann Problem (RP), in the present work we are interested in the RP that develops across a bed step.
. All rights reserved.
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We refer to this specific RP as a Step Riemann Problem (SRP). Despite the fact that this topic is not new and many papers
have been devoted to this subject, several points regarding the exact solution of a SRP are still controversial and need to
be clarified before aiming at the development of accurate numerical solvers.

What can be inferred from the literature is that, with respect to a RP on horizontal bed, the SRP presents one more stand-
ing wave positioned over the bed step, which consists in a discontinuity in the flow variables. The existence of this wave has
been demonstrated in [1] on the basis of similarity considerations. On the other hand, in [6] the demonstration is obtained by
using standard mathematical tools. Following the idea proposed by [11] of considering the bed level as an additional vari-
able, the standard Shallow Water (SW) system is extended by introducing an additional equation asserting the time invari-
ance of the bed level. The resulting system is:
@h
@t þ @

@x ðhuÞ ¼ 0
@
@t ðhuÞ þ @

@x ðhu2 þ 1
2 gh2Þ þ gh @z

@x ¼ 0
@z
@t ¼ 0

8><>: ð1Þ
where h is the water depth, u is the depth-averaged velocity and z is the elevation of the bed above a reference level. In this
way, the term gh@z=@x is no longer a mere geometrical source term but plays an important role in the eigenstructure of the
problem. A classical analysis shows that this system admits three distinct eigenvalues: two of these are the same as the clas-
sical SW equations, while the third is identically zero. The standing wave associated to this last eigenvalue is a contact wave
and appears only in presence of a bed discontinuity (see Section 2.2.1 for details).

The presence of such a wave has been addressed by several works. However, the literature is controversial regarding the
relations that connect the flow variables (depth and velocity) across the bed discontinuity. In particular, two approaches are
present: one based on mass and energy conservation principles and the other based on mass and momentum conservation
principles.

In most works, the former approach is adopted: Alcrudo et al. [1] and analogously [5] claim that the use of the mass-en-
ergy approach is compulsory because the mass-momentum approach, leading to the standard SW system (namely, system
(1) without the last equation), must be discarded when the slope of the bed becomes infinite, as in a step. However, in both
works there is awareness that dissipation actually occurs in the recirculation cell located at the inner corner of the step and
therefore they introduce the possibility of a loss in the energy relation. Galloüet et al. [7], Chinnayya et al. [6], and Andrianov
[2] claim that, since the standing wave over the step is a contact discontinuity, it must be characterized by the constancy of
the relevant Riemann Invariants (RIs), namely mass and energy, in any situation except in the resonant case. This result is
rather controversial because from the mathematical point of view energy losses are not admitted, while from the physical
point of view it is clear that they actually exist.

In contrast, the latter approach is used in [4]. The authors, even though they initially describe the problem by means of
(1), characterize the standing wave by applying the principle of conservation of mass and momentum directly to an infin-
itesimal control volume that includes the step, obtaining equations that can be called Generalized Rankine–Hugoniot
(GRH) relations. In this work energy is used as a constraint to rule out the solutions that are physically inadmissible, i.e. those
for which energy is not dissipated across the step.

The first goal of our work is to provide a unified approach, starting from system (1), able to overcome the evident con-
tradictions between the two approaches present in the literature. A deep analysis of the features of the contact waves in non-
conservative systems (as (1) appears to be) shows that, unlike in standard conservative systems, RIs are generally not
constant across a contact discontinuity whose relevant eigenvalue is independent from the problem variables. In other
words, it is possible to claim that system (1) admits, over the bed step, a contact wave through which energy is not con-
served, while GRH relations hold. Therefore, system (1) together with the relevant GRH relations, constitutes an approach
that is thoroughly exhaustive from the theoretical point of view, and also physically acceptable.

From a numerical point of view, the literature presents several different finite-volume, Godunov numerical approaches to
the shallow water problem in presence of a bed step situated at the interface between two computational cells. In [24] the
authors use an HLL solver for the homogeneous part of the standard SW system with a proper reconstruction of the variables
(SGM method) to be used in the Riemann solver and add an eddy friction to account for the presence of the step. Galloüet
et al. [7] presents several variants of Roe-type solvers applied to system (1), in which energy conservation across the contact
wave is assumed. A well-balanced method, in which the SRP is solved by introducing a linear expansion of the bed step and
using stationary solutions inside it, is also presented in [6]. This particular way of solving the SRP leads to solutions in which
energy is preserved except in the resonant case. Finally, [15] uses a well-balanced Generalized Roe solver for nonconserva-
tive systems. Also in this case, the solver is based on constancy of the RIs across the contact wave. Summarizing, all the exis-
tent solvers use, in some way, the conservation of the energy across the step. The only exception is [4] where an exact solver
based on the GRH relations is used.

Overcoming the limits of the majority of the existing solvers is the second goal of our paper. By using the GRH relations
for the step contact wave, we present an SRP solver free from any bond with energy conservation. Moreover, through an effi-
cient predictor–corrector procedure, the solver is able to provide the solution of a given SRP with any desired accuracy. The
predictor step uses a well-balanced Generalized Roe solver that derives from a mobile-bed solver presented in [18]. It sup-
plies the wave structure (the sequence and type of waves) of the SRP as well as a first estimate of the SRP solution. The
corrector step solves the nonlinear system of equations related to the given wave structure by means of an iterative
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Newton–Raphson method, using as a starting point for the iterations the approximate solution provided by the predictor.
The proposed method has been tested against several test cases, in order to check its effectiveness and accuracy. For a num-
ber of step Riemann Problems, numerical predictions obtained by using the proposed approach have been compared to the
exact solutions, obtained by an inverse procedure [2,17], achieving good results.

The paper is structured as follows: in Section (2) all the mathematical elements necessary to describe the SW problem
with a bed step are presented; Section (3) is devoted to the analysis of the contact waves in nonconservative systems, while
in Section (4) the corresponding relations between the flow variables are found and discussed in detail. In Section (5) the
two-step solver for the SRP is presented, and in Section (6) the comparison between exact and numerical solutions (obtained
using the proposed method) is presented. Finally, Section (7) closes the paper with the conclusions.
2. Mathematical description of the SW problem with a bed step

In this section, we present the derivation of all the mathematical elements necessary to describe any free-surface SW flow
with (and without) the presence of a bed step. All the relations will be obtained starting from the physical principles of mass
and momentum conservation written in integral form. Using this approach we give a clear physical meaning to the terms
appearing in the derived equations. We first present the general formulation of the flow equations for a control volume mov-
ing with a given non-material speed. Then, from these integral equations we derive the PDEs system of the SW problem with
a bed step, and the shock relations for the cases of horizontal and discontinuous bed.

2.1. Integral formulation

Let us consider a reference system with a horizontal x-axis and a vertical y-axis, with the positive direction upwards (see
Fig. 1). Considering a generic two-dimensional control volume cv, moving with a non-material speed ~vcv , the principles of
mass and momentum conservation read:
Fig. 1.
conserv
d
dt

Z
cv

qdV þ
I

cs
ðqÞ~ur � d~A ¼ 0 ð2Þ

d
dt

Z
cv
ðq~uÞdV þ

I
cs
ðq~uÞ~ur � d~A ¼

X
i

~Fi ð3Þ
where cv and cs refer, respectively, to the control volume and to the control surface at a given time t;q is the density of the
fluid;~u ¼ ðu;vÞ is the fluid velocity;~ur ¼ ður ;vrÞ is the relative velocity of the fluid with respect to the control surface; d~A is a
vector normal to the control surface (pointing outwards) and with module equal to dA;~Fi is the ith external force acting on
the control volume. Note that time derivatives are not material derivatives.

The 1D SW version of the previous equations can be obtained by introducing the following hypotheses (see e.g. [21, Chap-
ter 10]):

(a) The control volume is defined by two vertical planes, located at x1ðtÞ and x2ðtÞ and moving with a non-material hor-
izontal velocity u0, and two material surfaces, CbðtÞ and CsðtÞ, that coincide with the bed and with the free-surface,
respectively (see Fig. 1); along these two surfaces, the relative velocities are null.

(b) The density q of the fluid is constant.
(c) The vertical fluid velocity v is negligible: the momentum conservation along the y-direction yields the hydrostatic

pressure distribution.
(d) The velocity of the fluid particles is constant along any vertical section.
(e) The bed is smooth everywhere and its slope is small except for a finite number of discontinuities.
Sketch of the mobile control volume cv and of the physical quantities used to derive the integral formulation of the mass and momentum
ation equations.
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Notice that the point (c) can be derived more formally from the Euler equations under the hypothesis that the typical
depth of the fluid is much smaller than the typical length in the horizontal direction (see [21, Chapter 2]). Moreover, it does
not hold when a shallow flow occurs on a very steep bed. In these conditions it is more appropriate to assume that what is
negligible is the velocity normal to the bed and not v (see e.g. [19,3]). Nevertheless assumption (e) restricts the study to cases
in which point (c) is acceptable throughout the flow field.

Integral formulation of the SW equations can be obtained by using the previous assumptions and performing the integra-
tion along the y-direction of Eq. (2):
d
dt

Z x2ðtÞ

x1ðtÞ
hdxþ ½hur �x2ðtÞ

x1ðtÞ ¼ 0 ð4Þ
where ½��x2ðtÞ
x1ðtÞ is the difference between the value of the function inside the brackets evaluated at positions x2ðtÞ and x1ðtÞ and

at a given time t. Analogously, the momentum conservation in the x-direction becomes:
q
d
dt

Z x2ðtÞ

x1ðtÞ
ðhuÞdxþ q½ðhuÞur �x2ðtÞ

x1ðtÞ ¼ P1 � P2 þ
Z Cbðx2ðtÞÞ

Cbðx1ðtÞÞ
pbx dCb �

Z Cbðx2ðtÞÞ

Cbðx1ðtÞÞ
sbx dCb ð5Þ
where P1 ¼ ch2
1=2; P2 ¼ ch2

2=2 (c ¼ qg being the specific weight) are the resultants of the pressure distribution, respec-
tively on sections x1ðtÞ and x2ðtÞ, h1 and h2 are the water depths at x1ðtÞ and x2ðtÞ and pbx and sbx are the x-components,
respectively of the pressure term and the bottom stress term exerted by the bed on the fluid along CbðtÞ.

Since we have only two equations, in order to close the problem it is necessary to provide suitable relations that link the
bottom pressure and stress terms with the flow unknowns uðx; tÞ; hðx; tÞ. The bed shear-stress sbx can be expressed using
either the Manning or the Chézy formulation; a generic expression is the following:
sbx ¼ Fðjuj; hÞu
Nevertheless, in the rest of the paper, we have considered a frictionless bed, since the presence of the bottom friction source
term does not affect the present study. As far as the bottom pressure is concerned, different assumptions must be introduced
for smooth and for discontinuous-bed cases, as will be shown in the following sections.

2.2. The PDE system

The PDE system can be obtained from Eqs. (4) and (5) by using the following two assumptions (see [21]):

(a) The control volume does not move. i.e. u0 ¼ 0.
(b) The control volume is infinitesimal and inside it the flow variables are smooth functions.

The consequences of these assumptions on Eqs. (4) and (5) are the following:

1. vcv ¼ 0; v r ¼ u; x1 and x2 are no longer functions of time. Therefore, time derivatives become partial time derivatives;
2. using the mean-value theorem, the integrals of the variables are simply equal to the variables themselves multiplied by

the infinitesimal width of the control volume;
3. under the hypothesis of hydrostatic pressure distribution, the x-component of the bottom pressure becomes:
pbx dCb ¼ �ch
@z
@x

dx ð6Þ
4. by using a first order Taylor expansion, all the differences ½��x2
x1

become differential expressions.

On the whole, in the limit as dx approaches zero, Eqs. (4) and (5) become:
@h
@t
þ @

@x
ðuhÞ ¼ 0

@

@t
ðquhÞ þ @

@x
qu2hþ c

h2

2

 !
¼ �ch

@z
@x
Considering the bed elevation as a variable of the problem and introducing the constraint that the bed cannot move, i.e.
@z=@t ¼ 0, the system becomes:
@

@t
Uþ @

@x
FðUÞ þH

@U
@x
¼ 0 ð7Þ
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where
U ¼
h

uh

z

264
375; F ¼

uh

u2hþ 1
2 gh2

0

264
375; H ¼

0 0 0
0 0 gh

0 0 0

264
375 ð8Þ
With this approach, the system is clearly nonconservative due to the presence of the term H@U=@x, where H is the matrix of
the nonconservative fluxes. Therefore, the vector U is no longer the vector of conserved variables, but we will keep on calling it
such, meaning that its components come directly from the formulation of conservation principles.

2.2.1. Eigenstructure analysis of the extended SW system
In the following we briefly present the eigenstructure analysis of system (7) in terms of conserved variables. For a detailed

analysis we address the reader to [22, Chapter 3], while in Appendix A a detailed analysis in term of primitive variables is
given.

Considering the Jacobian matrix of the conservative fluxes JU ¼ dF=dU, Eq. (7) can be written in the following quasi-linear
form:
@U
@t
þ A

@U
@x
¼ 0 ð9Þ
where A ¼ JU þH. The relevant eigenvalues ki that satisfy the relation
det jA� kiIj ¼ 0 ð10Þ
are: ffiffiffiffiffiffip ffiffiffiffiffiffip

k1 ¼ u� gh; k2 ¼ 0; k3 ¼ uþ gh ð11Þ
The corresponding right eigenvectors, satisfying the relation
ARi ¼ kiR
i

are: 2 3 2 3 2 3

R1 ¼

1
u�

ffiffiffiffiffiffi
gh

p
0

64 75; R2 ¼
1
0

ðu2=gh� 1Þ

64 75; R3 ¼
1

uþ
ffiffiffiffiffiffi
gh

p
0

64 75 ð12Þ
It can be noticed that the 1st and the 3rd characteristic fields are equivalent to the classical SW PDE system over a flat-
bed; therefore (see e.g. [12]) they are genuinely non-linear and can develop either shock or rarefaction waves. Focusing on
the 2nd characteristic field, since k2 ¼ 0, we have:
rk2ðUÞ � R2ðUÞ ¼ 0 8U 2 Rn ð13Þ
This field is therefore linearly degenerate and the relevant waves are contact waves.
In case of conservative systems, it is well-known that across a contact wave both the Rankine–Hugoniot (RH) relations

and the Riemann Invariants (RIs) hold. As we will show further, this might be no longer true in case of nonconservative sys-
tems. In order to prove the peculiar features of the contact waves in nonconservative systems, we need to obtain the shock
relations valid across a bed step.

2.3. Shock relations and the Generalized Rankine–Hugoniot equations

The relations valid across a discontinuity in the flow variables can be obtained from Eqs. (4) and (5) by using the following
two assumptions:

(a) The control volume is infinitesimal (see [21, Chapter 10]).
(b) The control volume moves with velocity u0 equal to the shock speed S. Therefore, ur ¼ u� S.

Let us consider a generic function wðx; tÞ that represents hðx; tÞ in (4) and the product uðx; tÞhðx; tÞ in (5). The consequences
of these assumptions are the following:

1. referring to Fig. 2, inside the infinitesimal control volume of length dx the continuous variations of wðx; tÞ can be disre-
garded because they are infinitesimal of higher order with respect to the discontinuous variations. Therefore, in a small
interval around the discontinuity, the function can be considered as piecewise constant;

2. let us call wL;wR the values of the function wðx; tÞ on the left and on the right of the discontinuity, respectively.
If the control volume moves with a velocity equal to the shock speed, i.e. vcv jx1ðtÞ ¼ vcv jx2ðtÞ ¼ S, the value of the
integral is constant because both the argument and the length of the integration interval do not change in time, so we
obtain
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d
dt

Z x2ðtÞ

x1ðtÞ
wðx; tÞdx ¼ 0 ð14Þ
Therefore, the time derivatives of the integral terms in (4) and (5) become null.

It is now possible to write the specific shock relations valid for flat-bed and for discontinuous-bed.

2.3.1. The flat-bed case
In case of flat-bed, considering the previous results, Eq. (4) becomes:
½hur �x2ðtÞ
x1ðtÞ ¼ hRðuR � SÞ � hLðuL � SÞ ¼ 0
where the subscripts L;R indicate the values of the functions, respectively on the left and on the right of the discontinuity.
This equation can be rewritten as:
hRuR � hLuL ¼ SðhR � hLÞ ð15Þ
Similarly Eq. (5) becomes:
q½huv r �x2ðtÞ
x1ðtÞ ¼ P1 � P2

hRuRðuR � SÞ � hLuLðuL � SÞ ¼ g
h2

L

2
� g

h2
R

2

so we finally obtain:
u2
RhR þ g

h2
R

2

 !
� u2

L hL þ g
h2

L

2

 !
¼ SðhRuR � hLuLÞ ð16Þ
Both equations can be written in the standard RH vectorial form:
FR � FL ¼ SðUR � ULÞ ð17Þ
where F,U are given by (8).
Given a left state UL, the set of all the states UR which satisfy the previous equation gives a curve in the state space called

Hugoniot Locus (HL).
It is possible now to understand how the shock theory approximates the real world in case of a flat-bed. Let us consider an

hydraulic jump with a well-defined roller, moving with speed S, and a control volume moving with the same velocity,
bounded by two vertical sections positioned sufficiently far from the turbulent vortex, such that along these sections the
SW approximations hold. Thus, conservation of mass and momentum written for this control volume leads to an expression
equivalent to Eq. (17). It is interesting to notice that inside this control volume the flow field does not satisfy the SW assump-
tions at all. However, due to the stationarity of the formulation (see Eq. (14)), the result is independent both from what hap-
pens inside the control volume and from its length. Therefore, we can conclude that the shock theory describes quite well an
hydraulic jump with a roller but reduces it to a pointwise discontinuity (see e.g. [13], sect. 11.6). This is actually consistent
with the SW assumption that water depth is much smaller than the typical horizontal scale. Considering that the length of a
hydraulic jump is proportional to the water depth [8], it is clear that its length can be considered negligible. In this view, it is
also possible to justify why an inviscid fluid dissipates energy across a shock. All the viscid (and turbulent) dissipations are
actually hidden in the discontinuity that represents what in reality is a highly dissipative turbulent vortex. When a hydraulic
jump does not present a well-defined roller, shock theory does not describe the actual behavior of the flow so well because
the SW conditions are not matched on the boundaries of the control volume.
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2.3.2. The discontinuous bed case
We look now for a relation valid across a bed discontinuity. From a mathematical point of view, the approach is exactly

the same as that used in the previous case, but now the shock speed is null, i.e. S ¼ 0; ur ¼ u and x1; x2 are no longer func-
tions of time. Eq. (4) becomes:
hRuR � hLuL ¼ 0 ð18Þ
and expresses the conservation of the discharge. Eq. (5) needs some attention. Referring to Fig. 3 we can write [17,4]:
½ðhuÞur�x2
x1
¼ P1

q
� P2

q
þ
Z Cbðx2ðtÞÞ

Cbðx1ðtÞÞ

pbx

q
dCb ð19Þ
The left-hand terms become:
½ðhuÞv r �xx2
1 ¼ hRu2

R � hLu2
L :
The last term on the right-hand side represents the x-component of the integral pressure exerted by the bottom along Cb.
Along the discontinuity, Cb becomes a function of the y-coordinate. Indicating with zL and zR the elevations to the left and
right sides (respectively) of the bottom discontinuity, the integral of the bottom pressure (thrust term) can be written as:
D ¼
Z Cbðx2Þ

Cbðx1Þ

pbx

q
dCb ¼

Z zR

zL

pbx

q
dy ð20Þ
It is clear that the pressure distribution must depend on the actual flow behavior in the neighborhood of the bed disconti-
nuity, including the presence of a dissipative vortex near the step and the non-hydrostatic features of the flow field. More-
over, we must keep in mind that in our approach, deriving from shock theory, all the non-SW flow region is lumped in a
single discontinuity, because of its limited width. Lacking experimental evidence and reliable solutions (even approximated)
of the fully vertical 2D Reynold equations able to lead to a trustworthy pressure distribution, some hypotheses must be
introduced. Nonetheless it must be stressed that any assumption regarding pressure actually conceals an assumption on
the dissipation magnitude and on the non-hydrostaticity. Last but not least, unlike what happens in the flat-bed case, be-
cause of the presence of the thrust term, the relation connecting the flow variables before and after the step is not indepen-
dent from what happens inside the control volume.

In this paper we will use the following relation, proposed by [17] (used also in [4,18]) on the basis of physical
considerations:
D ¼ �g hk �
jzR � zLj

2

� �
ðzR � zLÞ with k ¼

L if zL 6 zR

R otherwise

�
ð21Þ
Eq. (21) derives from an hydrostatic distribution that depends on the water depth on the lower side of the step. Note that this
expression is exact for static conditions and converges to the differential expression (6) in the case of infinitesimal discon-
tinuity. It is important to keep in mind that this expression constitutes an assumption valid in a wide range of flow condi-
tions, but not for all: its validity decreases as hk=jtzR � zLj approaches unity and clearly ceases when hk < jzR � zLj. Laboratory
experiments are required to assess the physical soundness of Eq. (21) and find suitable expressions for flow conditions for
which it is not applicable. In any case, the theoretical approach that has been followed in this work is generally valid and
does not depend on the specific choice of this relation, whereas the results depend to some extent on it. This will be shown
more clearly later in the paper.

Then, Eq. (19) can be written in the following form:
hRu2
R þ g

h2
R

2

 !
� hLu2

L þ g
h2

L

2

 !
¼ D ð22Þ
Fig. 3. Control volume used to obtain the Generalized Rankine–Hugoniot relations in case of discontinuous solution over the bed step.
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Therefore, we can write Eq. (22) together with Eq. (18) in the following vectorial form:
FR � FL ¼ D ð23Þ
where DT ¼ ð0;D;0Þ. This is a special case of the Generalized Rankine–Hugoniot (GRH) relation:
FR � FL ¼ Dþ SðUR � ULÞ ð24Þ
that can be obtained (see [18]) in the case of a fully mobile-bed. The origin of the extra term with respect to the standard RH
relations lies in the nonconservative nature of the pressure term. It should be noticed that this relation can be obtained from
the differential formulation by using the distribution theory (see e.g. [23,15,16]). Nevertheless, such an approach is not able
to give a clear physical meaning to the extra term while using our approach this comes out straightforwardly.

Finally, as for the flat-bed case, given a left state UL and a step with height jzR � zLj, the set of the right statesthat satisfy
(24) defines a curve in the state space that will be called here Generalized Hugoniot–Locus (GHL).

3. Contact waves in nonconservative systems

In this section we will demonstrate that contact waves in nonconservative systems show features rather different with
respect to fully conservative systems (Section 3.5). This result will be applied to the specific case of the contact wave that
develops over a bed step (Section 3.6). In order to achieve this goal, for the sake of clarity, it is necessary to briefly recall some
basic concepts relative to contact waves. This is done in Sections 3.2, 3.3 and 3.4 where we followed [20]. For a comprehen-
sive analysis of the problem for conservative systems we also refer the reader to [13].

3.1. Conservative vs. nonconservative systems

A generic conservative hyperbolic system can be written in the following way:
@U
@t
þ @F
@x
¼ 0 ð25Þ
where U is the vector of the conservative variables and F is the vector of the conservative fluxes. The relevant eigenvalues ki

are defined by:
det jJU � kiIj ¼ 0
where JU is the Jacobian matrix dF=dU, while the right eigenvectors satisfy the following relation:
JURk � kkRk ¼ 0 ð26Þ
Discontinuous solutions of (25) satisfy the RH relations, namely Eq. (17).
A generic nonconservative hyperbolic problem can be written in the following way:
@U
@t
þ @F
@x
þH

@U
@x
¼ 0 ð27Þ
where U is the vector of the conserved variables, F is the vector of the conservative fluxes, while H is the matrix of the non-
conservative fluxes. Eq. (27) can be written in the following quasi-linear form:
@U
@t
þ A

@U
@x
¼ 0 ð28Þ
where A ¼ JU þH and JU ¼ dF=dU. The relevant eigenvalues ki are defined by:
det jA� kiIj ¼ 0 ð29Þ
while the corresponding right eigenvectors satisfy the relation:
ARi ¼ kiR
i

or equivalently:
JURi � kiR
i ¼ �HRi ð30Þ
Discontinuous solutions of (27) satisfy the GRH relations, namely Eq. (24).

3.2. Integral curves and riemann invariants

Given an hyperbolic system, either conservative or nonconservative, composed by n differential equations in the variables
U ¼ ðU1; . . . ;UnÞ, let us consider the generic eigenvalue kk and the relevant right eigenvector RkðUÞ. In the phase-space, i.e. in
the n-dimensional space of the variables, RkðUÞ can be considered as a vector field, i.e. a function Rn ! Rn. As for every vector
field, we can consider the lines everywhere tangent to RkðUÞ (a concept analogous to the streamlines for the velocity field).
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Such lines are called Integral Curves (ICs) associated with RkðUÞ, and can be expressed, as any other curve, in parametric
form, i.e. as a function of a generic parameter n 2 R:
sk ¼ skðnÞ ¼

U1ðnÞ
..
.

UnðnÞ

2664
3775 ð31Þ
Since the vector tangent to a curve is obtained from the derivative of the curve with respect to the parameter n, the con-
dition of parallelism between the tangent vector and the vector field can be expressed as
d
dn

sk ¼ aðnÞRk ð32Þ
where aðnÞ is a scaling factor that depends on the particular parametrization of the curve. Without loss of generality, we can
set aðnÞ � 1.

It is possible to obtain the IC curve simply by integration of the previous system in which the dependency of RkðUÞ on n is
considered through UðnÞ. Alternatively, it is possible to get an expression directly in terms of U. In fact, Eq. (32) can be rewrit-
ten in the following form:
dUi

Rk
i

¼ dn; i ¼ 1; . . . ;n ð33Þ
where Rk
i is the ith component of Rk. Noting that the terms on the right-hand side in Eqs. (33) are all equal, the dependency

on n can be removed, giving the following set of equations:
dU1

Rk
1

¼ dU2

Rk
2

¼ � � � ¼ dUn

Rk
n

ð34Þ
where only n� 1 equations are linearly independent.
A k-Riemann invariant is defined as a surface wðUÞ : Rn ! R such that its gradient is orthogonal to the kth eigenvector:
rwðUÞ � Rk ¼ 0 8U 2 Rn ð35Þ
There are three main properties of these surfaces:

1. A k-Riemann invariant wðUÞ is constant along the integral curve skðnÞ. In fact, the variation of wðUÞ along the curve
skðnÞ is given by:
d
dn

wðskðnÞÞ ¼ rw � d
dn

skðnÞ ð36Þ
Using Eq. (32) with aðnÞ � 1 and Eq. (35), we obtain:
d
dn

wðskðnÞÞ ¼ rw � Rk ¼ 0 ð37Þ
In other words, the integral curve belongs to the level set of the given k-Riemann invariant;
2. there exist n� 1 linearly independent k-Riemann invariants associated with the k-th eigenvector;
3. given a point U0, the intersection of the n� 1 level sets wiðUÞ ¼ const, with i ¼ 1; . . . ;n� 1; passing through U0, is

equivalent to the integral curve skðnÞ passing through U0.

Thanks to this last property, the n� 1k-Riemann invariants can be computed by means of Eq. (34) instead of using the
definition (35).

3.3. Linearly degenerate fields

The characteristic field associated with the kth eigenvalue is said to be linearly degenerate when:
rkkðUÞ � RkðUÞ ¼ 0 8U 2 Rn ð38Þ
This means that, thanks to (35), kkðUÞ is a k-Riemann invariant. From (37) follows:
d
dn

kkðskðnÞÞ ¼ 0 8n 2 R ð39Þ
Therefore, the eigenvalue remains constant along the integral curve. As a particular case, when the eigenvalue kk does not
depend on U, it is not only constant along the integral curve but all over the state space.
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The type of wave associated with a linearly degenerate field is called a contact wave or contact discontinuity. The prop-
erties of such waves will be discussed in the following two sections.

3.4. Properties of contact waves in conservative systems

Let kk be an eigenvalue whose characteristic field is linearly degenerate and let UL be a generic state. It can be proven that
the associated contact wave is described by a discontinuous function of the type:
Uðx; tÞ ¼
UL x < tkk

UðnÞ x > tkk

�
ð40Þ
i.e., by a function Uðx; tÞ characterized by a discontinuity moving with constant speed kk, where UðnÞ is any state connected to
UL by means of the relevant k-Riemann invariants. In other words, UðnÞ must lie on the IC passing through UL:
d
dn

UðnÞ ¼ Rk; Uð0Þ ¼ UL ð41Þ
The proof is as follows (see [20, Chapter 17]). Eq. (40) is a discontinuous solution of the system (25) only if it satisfies the
relevant RH condition:
½F� ¼ S½U� ð42Þ
where ½�� indicates the jump in the quantity inside the brackets across the discontinuity moving with speed S. Therefore, in
order to prove the thesis, we must verify that the previous equation holds when evaluated between UL and UðnÞ and with
S ¼ kk:
½F� SU�n0 ¼ 0:
If n is infinitesimal, the previous condition can be rewritten in the following equivalent differential form:
d
dn
ðF� SUÞ ¼ 0:
The derivative can be expanded in the following way:
d
dn
ðF� SUÞ ¼ dF

dU
d
dn

UðnÞ � S
d

dn
UðnÞ ð43Þ
Considering Eq. (41), recalling that dF=dU ¼ JU, and finally using Eq. (26), we obtain:
d
dn
ðF� SUÞ ¼ JURk � kkRk ¼ 0
Hence, the pair ðUL;UðnÞÞ satisfies the RH condition with S ¼ kk, and so Eq. (40) is actually a discontinuous solution of (25). It
should be noticed that since UðnÞ satisfies the RH relations, it must lie on the HL. Noting that UðnÞ also lies on the IC, we can
conclude that the HL curves and the IC curves coincide in case of contact waves in conservative systems. In other words, both
Riemann invariants and RH relations hold at the same time.

3.5. Properties of contact waves in nonconservative systems

In nonconservative systems, discontinuous solutions must satisfy the GRH relation (see Eq. 24) which is characterized by
the nonconservative term D. This generates some differences in the features of contact waves with respect to conservative
systems.

Theorem 1. Given a generic nonconservative system of type (27) and a generic reference state UL, if the kth characteristic field
relative to the eigenvalue kk is linearly degenerate, then the associated contact wave is described by a discontinuous function of
type
Uðx; tÞ ¼
UL x < tkk

UðnÞ x > tkk

�
ð44Þ
where UðnÞ is any state connected to UL ¼ Uð0Þ by means of the relevant k-Riemann invariants, if the following equation holds:
�
Z n

0
HRkdn ¼ D ð45Þ
Proof. Function (44) is a discontinuous solution of (27) if it satisfies the GRH condition (24) that, for the specific case,
becomes:
½F� SU�n0 � D ¼ 0 ð46Þ
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Here ½��n0 indicates the variation of the function inside the brackets evaluated in two points (0 and n) of the same IC. If n is
infinitesimal, the previous variation can be rewritten as a differential expression:
d
dn
ðF� SU� DÞ ¼ 0 ð47Þ
Let us set S ¼ kk and expand the derivatives:
d
dn
ðF� SU� DÞ ¼ dF

dU
d

dn
UðnÞ � kk

d
dn

UðnÞ � dD
dn

ð48Þ
Using dF=dU ¼ JU and relation (41) we obtain:
d
dn
ðF� SU� DÞ ¼ JURk � kkRk � dD

dn
ð49Þ
By using Eq. (30) we get:
d
dn
ðF� SU� DÞ ¼ �HRk � dD

dn
ð50Þ
In order to obtain (47) we must set:
�HRk � dD
dn
¼ 0 ð51Þ
which, integrating between states L and n, gives (45). h

Analogously to the conservative case, under condition (45) IC coincides with the GHL. Moreover, in nonconservative sys-
tems with a linearly degenerate field, Eq. (45) could be used to evaluate D without resorting to the direct derivation of the
GRH relation, which could present several difficulties.

As already noticed, in our specific case the eigenvalue kk does not depend on U (k2 ¼ 0, see Eq. (11) ). In this particular
case, the following theorem holds:

Theorem 2. Given a nonconservative system of type (27) and a generic reference state UL, if the kth characteristic field associated
with the eigenvalue kk is linearly degenerate and does not depend on U, then the associated contact wave is described by a
discontinuous function of type
Uðx; tÞ ¼
UL x < tkk

Uð�Þ x > tkk

�
ð52Þ
where Uð�Þ is any state connected to UL ¼ Uð0Þ by means of the GRH relation.

Proof. Unlike the previous cases, we are not bound to choose the right status of the wave along the IC to be guaranteed that
kk is constant because the eigenvalue does not depend on U. Therefore, if Uð�Þ belongs to the GHL, then (40) is a discontin-
uous solution of (27). h

Corollary 1. In contact waves of nonconservative systems where the relevant eigenvalue does not depend on U, IC and GHL may
not coincide.

Proof. We have seen that IC and GHL coincide if Eq. (45) holds. This may not happen because the hypotheses used to obtain
D in the GRH relation are not the same as those used to obtain the partial differential equation system (and indirectly, to
obtain the terms appearing on the left of the relation). Therefore, condition (45) must be checked for any specific problem:
if it is not verified, IC and GHL do not coincide. h

As reported in Appendix B, all the theory developed above in terms of conserved variables can be easily reformulated in
terms of primitive variables.

3.6. Contact waves in the step SW problem

We have already shown in Section 2.2.1 that the SW problem with a bed step presents a linearly degenerate field asso-
ciated with k2 ¼ 0. The analysis of the peculiar features of the associated contact waves will be performed using the physical
variables WT ¼ ðh;u; zÞ instead of the conserved variables UT ¼ ðh;uh; zÞ, to make its derivation is more straightforward and
clear.

What we want to show is that, assuming that D is given by (21), IC does not coincide with GHL. Mathematically, in terms
of primitive variables this means that (see Appendix B):
�
Z n

0
HBeR2dn – D
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where B and eR2 are defined in Appendix B.
The left-hand side term can be evaluated by using the parametric expression of the IC curve passing through a generic

state WT
L ¼ ðhL; uL; zLÞ, i.e. Eq. (76):
�
Z n̂

0
HBeR2dn ¼ �

Z n̂

0

0
u2ðnÞ � ghðnÞ

0

264
375dn
It can be noticed that only the second equation, the one relevant to the momentum equation, is not null.
Setting n̂ ¼ hR � hL and uðn̂Þ ¼ uR, after some manipulations one gets:
�
Z hR�hL

0

hLuL

nþ hL

� �2

� gðhL þ nÞ
 !

dn ¼ 1
2

gh2
R þ u2

RhR

� �
� 1

2
gh2

L þ hLu2
L

� �
ð53Þ
As far as the D term is concerned, the only component which is not null is the second. Setting zRðn̂Þ ¼ zR, from (76) follows,
after some manipulations:
zR � zL ¼ ðhL � hRÞ þ
u2

L

2g
� u2

R

2g

� �
ð54Þ
Substituting in (21) one gets
D ¼ �g hk �
1
2
ðhL � hRÞ þ

u2
L

2g
� u2

R

2g

� ����� ����� �
ðhL � hRÞ þ

u2
L

2g
� u2

R

2g

� �� �

which is clearly different from (53). The difference between IC and GHL is presented also graphically in Fig. 4 where the two
curves passing through the point WT

L ¼ ð5;2;0Þ are plotted. The detailed expression of the parametric form of the GHL curve
is given in the subsequent section.

We can conclude that, for the present problem, the standing wave that forms over a bed step is a special contact discon-
tinuity that, unlike standard contact waves in conservative systems, is not characterized by the constancy of the Riemann
Invariants (which would imply both mass and energy conservation, see Appendix A), but by the GRH conditions, which im-
plies that mass and momentum are conserved. This result answers to one of the basic question raised in this paper: the nat-
ure of the wave that develops over the step and its properties. Such a wave is actually a contact wave but, because of the
nonconservative nature of the relevant PDE system, Riemann invariants are not constant across it. Therefore, the apparent
contradiction between the mathematical and the physical approaches, present so far in the literature, is definitely resolved.

Nevertheless, the use of GRH relations to characterize the contact wave leads to a significant drawback: these relations
may give multiple solutions. Therefore, some constraints must be introduced to rule out the non physical solutions: in the
case of a genuinely non-linear shock, the constraint derives from the entropy condition kðULÞ > kðURÞ. It is clear that this con-
straint does not hold in the contact wave shock because the eigenvalue is constant both upstream and downstream of the
discontinuity. It is therefore necessary to introduce some other constraints. This topic is developed in detail in the following
section.
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Fig. 4. Comparison between the Generalized Hugoniot–Locus (thick solid line) and the integral curve starting from WL ¼ ð5;2;0Þ.
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4. Characterization of the step GHL

Given a left state WL, the step GHL curve represents the set of all the states WðnÞ that can be connected through
a step contact wave to WL. In the following, we will distinguish whether a point (state) of the curve is possible from a
mathematical point of view (i.e. simply a solution of the equation that defines the GHL curve), or is admissible from a
physical point of view (i.e., it also satisfies the constraints that will be defined later). As will be shown, from the analysis
of the plot representing the GHL curve it is straightforward to determine which parts of the curve are admissible and which
are simply possible.

4.1. The parametric form of the GHL

The parametric form of the GHL can be obtained starting from a parametrization of the water depth as a function of n, i.e.
hðnÞ ¼ hL þ n. The other components of the GHL curve can be obtained from Eqs. (18) and (22), i.e., by imposing the conser-
vation of the discharge and of the momentum across the bed discontinuity. The resulting expression is similar to the para-
metric form of the IC curve (Eq. (76) and Appendix A): in this case, the third component zðnÞ is evaluated by using the
equation of energy conservation instead of momentum conservation. Without loss of generality we can set zL ¼ 0. The curve
then becomes:
s�GHLðnÞ ¼

hðnÞ ¼ hL þ n

uðnÞ ¼ hLuL
nþhL

z�ðnÞ ¼
hL � 1ffiffi

g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2hLu2

L þ 2hðnÞu2ðnÞ þ gh2ðnÞ
q

�hðnÞ � 1ffiffi
g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hLu2

L � 2hðnÞu2ðnÞ þ gh2
L

q
8><>:

26666664

37777775 ð55Þ
where zþðnÞ corresponds to a positive step ðzR > zL ¼ 0Þ and z�ðnÞ to a negative step ðzR < zL ¼ 0Þ. Notice that the limits of
validity of (21) require that the height of the step, must be smaller than hL for a positive step and than hðnÞ for a negative
step. Mathematically this becomes:
zþðnÞ � hL < 0
z�ðnÞ þ hðeÞ > 0
Therefore, the expressions of z�ðnÞ in Eq. (55) become:
z�ðnÞ ¼
hL � 1ffiffi

g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2hLu2

L þ 2hðnÞu2ðnÞ þ gh2ðnÞ
q

�hðnÞ þ 1ffiffi
g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hLu2

L � 2hðnÞu2ðnÞ þ gh2
L

q
8><>:
In the following sections we will analyze the features of the GHL curves, considering separately the cases of positive and
negative.

4.2. Positive step

Fig. 5(a) shows the sþGHL curves starting from WL points characterized by a fixed value of hL ¼ 2 m and for values of uL rang-
ing from 0 to 4:43 m=s, which corresponds to Froude numbers ranging from 0 to 1. Fig. 5b shows the sþGHL curves starting
from WL points with a fixed value of hL ¼ 2 m and values of uL greater than 4:43 m=s, which corresponds to Froude numbers
greater than 1. In both figures, the starting points WL are connected by a magenta bold line. We recall that the sþGHL curves
represent the possible points, i.e. states to which WL can be connected through a step contact wave, in the case of positive
step. In particular, the line starting from point WL ¼ A and ending at point WðnÞ ¼ B is highlighted: this line will be consid-
ered later in this paragraph to explain some features of the GHLs.

What can be inferred from the analysis of the curves is that:

1. Each curve has a maximum, and the Froude number in that point is equal to 1. In fact, deriving zþðnÞ with respect to n
one obtains:
@

@n
zþðnÞ ¼ � 1ffiffiffi

g
p

gðnþ hLÞ �
h2

L u2
L

ðnþhLÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ hLÞ2 � 2hLu2

L þ 2h2
L

u2
L

nþhL

q ð56Þ
Let ncr be the value of n for which @zþðncrÞ=@n ¼ 0; at that point the numerator must be null:
gðncr þ hLÞ �
h2

L u2
L

ðncr þ hLÞ2
¼ 0: ð57Þ
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By using Eqs. (55), this relation can be rewritten as:
1 ¼ ðhLuLÞ2

gðncr þ hLÞ3
¼ u2ðncrÞ

ghðncrÞ
ð58Þ
which corresponds to the condition Fr2 ¼ 1.
2. Looking at Fig. 5(a), it is possible to individuate two branches in any GHL curve: the first, spanning from WL to the

maximum, presents possible right points in subcritical conditions, the second presents possible right states in super-
critical conditions. Analogously, looking at Fig. 5(b), it is possible to identify the supercritical branch, spanning from
WL to the maximum, and the subcritical branch.

3. Considering the physical principle that a fluid particle can move only from condition with higher energy (E) to con-
dition with lower energy, we can individuate admissible points Wðn̂Þ where
EðWLÞ > EðWðn̂ÞÞ ð59Þ
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The pieces of the GHL curves that are made inadmissible by this constraint are plotted in blue. Looking at Fig. 5(a), the
energy constraint rules out part of the supercritical branch of the GHL curves starting from subcritical WL. Note that
the red parts of the supercritical branch remain admissible from an energetic point of view. On the other hand, con-
sidering the curves with supercritical starting points WL (Fig. 5(b)), the energy constraint rules out the whole super-
critical branch and the upper part of the subcritical one.

4. Let us consider the bold sþGRL curves going from points A to B, and a step with a generic height ẑR; the possible condi-
tions over the step can be found by intersecting the sþGRL curve with a horizontal plane corresponding to z ¼ ẑR. The
following cases can be individuated:

ẑR ¼ 0. This is the case with a null step (horizontal bed condition). The two states (points A and B) represent what
in hydraulics is commonly defined as conjugate states of a hydraulic jump. If point WL ¼ A is in supercrit-
ical conditions (Fig. 5(b)), admissible WðnÞ points can be either A (unchanged condition) or B (in subcritical
conditions): this last case corresponds to a configuration of a steady shock over horizontal bed. In contrast,
if point A is in subcritical conditions (Fig. 5(a)), point B is inadmissible: in fact, this represents an unentro-
pic steady shock in which a subcritical left condition ðWL ¼ AÞ is followed by a supercritical right condition
ðWðnÞ ¼ BÞ.

ẑR > zþðncrÞ. In this case there are no intersections between the plane z ¼ ẑR and the curve. This means that the status
WL is not able to develop a contact wave across the step. In other words, it is not possible to encounter a
contact wave with a left value equal to that value of WL.
0 < ẑR 6 zþðncrÞ. In this case we can assume that the given height ẑR is reached by a continuous increase in the step elevation
from zero to ẑR. Consequently, the conditions over the step change continuously from the possible values at
the zero level (points A or B in the plots) to the value at the level ẑR. As a consequence of this Continuation
Principle (used in a similar way in [6]) it can be deduced that:
(a) If a point at zero level is admissible, we can continuously increase the step elevation from zero to ẑR, and WðnÞ at
the level ẑR will be admissible unless ruled out by the energy principle. As an example, in Fig. 5(a), point A cor-
responds to an admissible flow condition at zero level. Increasing the step height, we get admissible states
(green line) up to the step level ẑR. Considering now Fig. 5(b), point B corresponds to admissible flow conditions
at zero level. Increasing the step height, we obtain admissible states (green line) until a certain threshold level is
reached, since for larger values of ẑR the energy constraint is violated. In the same figure, point A corresponds to
an admissible status as well. However, increasing the step height to any value ẑR > 0, the energy principles
makes flow conditions inadmissible, and therefore the whole branch of the curve from A to the maximum,
excluding the starting point, is inadmissible.

(b) If a point at zero level is inadmissible, we cannot start applying the continuation principle, and therefore it is
impossible to reach any point of the relevant branch. We can conclude that the whole branch of a curve that
starts from an inadmissible point at the zero level is inadmissible. As an example, in Fig. 5(a), point B is an inad-
missible status at zero level, therefore the whole branch from B to the maximum is inadmissible, even though
the part nearest to the critical status (plotted in red) would be allowed by the energy principle. From this rea-
soning we can argue that it is not possible to have a subcritical condition WL on the left of the step and a super-
critical condition on the right. The continuation principle herein introduced expresses, in an intuitive way, the
Monotonicity Criterion, proved by [10], which states that any stationary discontinuity cannot cross the boundary
of strict hyperbolicity.
5. In practical situations, the height of the step is fixed. In this case it is useful to have a graphic representation
of the admissible states on the left and on the right of the given step. Let us consider the case with ẑR ¼ 0:75 m.
The set of the intersections of the sþGHL curves with the plane z ¼ ẑR (see Fig. 5(a) and (b) gives the lines that describe
the conditions on the right side of the step. These lines are shown in the right plots of Fig. 6(a) and (b) for the sub-
critical and the supercritical case, respectively. The colors of the lines have the same meaning as the 3D case: in green,
admissible states; in blue, states ruled out by the energy principle; in red, states ruled out by the continuation prin-
ciple. In the left graphs the lines of the possible states on the left of the step are shown. The dashed lines represent
inadmissible points because of the fact that the relevant sþGHL curves have no intersections with the given step, and
therefore such left states WL are not able to develop a contact wave across a step with ẑR ¼ 0:75 m. It is useful to
describe what happens to the contact wave as the Froude number of the left condition increases (with fixed left water
depth):

� For left states with 0 < FrL < 0:277 (thick solid magenta line, left plot, Fig. 6(b)) the corresponding right states are
characterized by subcritical conditions (green line, right plot, Fig. 6(b)). At each WL in this range corresponds only
one WR. If we consider an RP with initial conditions equal to an admissible pair (WL; WR), this RP develops no other
wave except the initial contact wave.

� For left states with 0:277 < FrL < 1:677 (dashed magenta lines, left plots, Fig. 6(a) and (b) there is no possibility to
develop a contact wave. If we consider an RP with initial conditions equal to an inadmissible pair ðWL; WRÞ, the other
waves that develop in this case change the condition near the step so as to reach a pair of values in the admissible
ranges.
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Fig. 6. Possible and admissible left and right states associated with a step contact wave in the case of bed variation of height ẑR ¼ 0:75 m with:
(a) supercritical; (b) subcritical WL states. Dashed magenta lines: inadmissible left states; thick magenta lines: admissible left states. Otherwise, for
meaning of line styles and colors see previous figures.
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� For left states with FrL > 1:677 (thick solid magenta line, left plot, Fig. 6(a)), the right states are characterized by sub-
critical conditions (green line, right plot, Fig. 6(b)). For each WL in this range there is only one WR. Also in this case, if
we consider an RP with initial conditions equal to an admissible pair ðWL; WRÞ, this RP develops no other wave except
the initial contact wave.

It is worth noticing that a suitable combination of the plots of Fig. 6(a) and (b) leads to the same graphs presented in [4]
for the positive step case.

4.3. Negative step

Fig. 7(a) shows the s�GHL curves starting from WL points as in the previous case, i.e. characterized by a fixed value of
hL ¼ 2 m and values of uL ranging from 0 to 4:43 m=s (which corresponds to Froude numbers ranging from 0 to 1).
Fig. 7(b) shows the s�GHL curves starting from WL points characterized by a fixed value of hL ¼ 2 m and values of uL greater
than 4:43 m=s (corresponding to Froude numbers greater than 1). In both figures, these points are connected by a bold ma-
genta line.

The analysis of these plots can be performed following the same approach outlined for the positive step case. The obser-
vations that can be made are the following:

1. In both cases of subcritical (Fig. 7(a)) and supercritical (Fig. 7(b)) states of WL, there are two distinct branches of the
curve: one corresponding to subcritical conditions and the other corresponding to supercritical conditions.

2. In Fig. 7(a), the energy principle rules as inadmissible all the subcritical branches of the GHL curves and parts of the super-
critical branches (blue lines). The remaining parts are ruled out by the continuation principle (in red). In other words, no
solution is admissible in these conditions. This result is somewhat surprising because one would expect that a subcritical
right condition may occur at least for a small negative step. This behavior is due to the assumption regarding the pressure
distribution over the step (Eq. 21). Thus, in these conditions, the expression (21) we have assumed for D is not correct, as
it leads to rather unphysical results. One could overcome the problem by searching for a proper pressure distribution
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(with the relevant value of D) leading to admissible solutions in this case. However, instead of just trying different
assumptions, we believe that a more correct approach will be the derivation of a suitable expression from laboratory
experiment. This is left to future work.

3. Let us consider now Fig. 7(b), corresponding to supercritical states WL and in particular the s�GHL curve plotted
with a bold line going from points A to B. Also, consider a negative step of height ẑR. The following cases can be
individuated:

ẑR ¼ 0. This is the case with a null step (horizontal bed condition). There are two possible solutions: the unchanged
subcritical condition (point A) and the subcritical condition of point B corresponding to a standard hydraulic
jump.

ẑR < 0. For certain ranges of WL both a subcritical and a supercritical admissible state exist: in a complete Riemann
Problem over the step, the actual state on the right of the step is determined by the wave that develops
downstream of the step.
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Fig. 8. Possible and admissible left and right states associated to a step contact wave in case of bed variation of height ẑR ¼ �0:75 m with: (a) supercritical;
(b) subcritical WL states. Dashed magenta lines: unadmissible left states; solid magenta lines: admissible left states. Thick lines: one admissible solution;
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�
4. Let us consider the case with ẑR ¼ �0:75 m: the set of intersections of the sGRL curves with the plane ẑR is shown in the
right plots of Fig. 8(a) and (b) for the subcritical and the supercritical cases, respectively. The colors and the styles of the
lines have the same meaning as in previous figures: admissible states in green; states ruled out by the energy principle in
blue; states ruled out by the continuation principle in red. In the left graphs, the lines of the possible states on the left of
the step are shown: the dashed lines represent states that are inadmissible because there are no intersections with the
given step. We consider now what happens to the contact wave as the Froude number of the left state increases (with
fixed left water depth):
� For left states with 0 < FrL < 1 (dashed magenta line, left plot, Fig. 8(b)) there is no possibility for a contact

wave to develop. If we consider an RP with initial conditions equal to an inadmissible pair ðWL; WRÞ, the other
waves that develop change the conditions near the step so that a new pair of values in the admissible ranges is
reached.

� For left states with 1 < FrL < 1:350 (thick solid magenta line, left plot, Fig. 8(a)), there is a single admissible right state.
� For left states with FrL > 1:350 (solid magenta line, left plot, Fig. 8(a)), there are two distinct right states.

It is again worth noticing that a suitable combination of the plots of Fig. 8(a) and (b) gives the same graphs presented in
[4] relating to the negative step case (or, equivalently, since [4] only consider positive steps, to the case of negative
velocities).

5. The numerical algorithm for the Step Riemann Problem

In the previous chapter, we have focused on the characterization of the step GHL. Here, we move on a broader view and
extend our attention to the numerical solution of the complete SRP, which is the other important goal of this paper. In par-
ticular, we want to develop a simple, fast and accurate algorithm able to evaluate, in presence of a step at the boundary be-
tween two computational cells, a proper numerical flux to be employed in any efficient SW finite-volume code. Before
describing the philosophy and the details of the algorithm, we need to describe briefly the structure of the solution of the
SRP.

thin lines: two admissible solutions. Otherwise, for meaning of line styles and colors see previous figures.
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5.1. The structure of the SRP solution

We look for the general solution of the following problem:
F

@U
@t þ @

@x FðUÞ þH @U
@x ¼ 0

Uðx;0Þ ¼
UL if x < 0
UR if x > 0

�8><>: ð60Þ
We recall here the results of the eigenstructure analysis of this hyperbolic system (9) presented in Section (2.2.1) and in
Appendix A:

� The system presents three eigenvalues (Eq. 11).
� The characteristic field associated with k2 ¼ 0 is linearly degenerate and presents a contact wave whose features are

described in detail in Section 4. The relation valid across this wave is the GRH relation expressed by Eq. (24).
� The characteristic fields associated with the other two eigenvalues ðk1; k3Þ are genuinely non-linear and therefore the cor-

responding waves (hereafter referred to as 1-wave and 3-wave, respectively) can be either shocks, characterized by Eq.
(17) or rarefactions, characterized by Eqs. (77) and (78).

Demonstration of the existence and uniqueness of the solution of (60) under the constraints introduced in Section 4 can
be found in [4]. Fig. 9 shows an example of a wave structure developing in an SRP. In this case the 1-wave is a rarefaction
propagating to the left while the 3-wave is a shock propagating to the right. As a consequence, there are two intermediate
states U1 and U2, to the left and right side of the bed step, respectively. Henceforth, the solution of an SRP will be labeled
using the initials of the different waves encountered moving from left to right in the phase plane, using S for Shock, B for
Bottom step, and R for Rarefaction. The wave pattern is thus named RBS from Rarefaction – Bottom step – Shock.

The unknowns of this problem are the conserved variable in fields 1 and 2, see Fig. 9, (for a total of 4 unknowns) plus the
number of shock speeds (when the wave structure of the solution contains shocks). Therefore, the number of unknowns
ranges generally from 4 to 6. Once the wave structure is determined, the exact solution to this problem can be found by solv-
ing a nonlinear system of equations constituted by the relations associated with each wave present in the solution. This sys-
tem presents multiple possible solutions. The only admissible one can be determined by considering the constraints
introduced in Section 4. It is clear that an algorithm that searches iteratively for a possible solution and then checks its
admissibility is certainly achievable but computationally very heavy.
5.2. A two-step numerical solver

The main idea underlying our numerical strategy is the following:

� To find a good approximate solution to the SRP able to identify the actual wave structure of the solution.
� To write the relevant nonlinear system and use a Newton–Rhapson iterative method to solve the system, up to the exact

solution, starting from the approximate values obtained from the approximate SRP solver.

Thus, the approximate solution of the SRP can be seen as a predictor step, while the solution of the nonlinear system cor-
responding to the relevant wave structure, as a corrector step. The success of this predictor–corrector strategy relies on the
quality of the approximate SRP solver used in the predictor phase: the nearer the approximate solution is to the exact one,
the fewer are the iterations required for the iterative procedure to converge to the exact solution.
L R

1 2

1-R 2-SB

x

z

x

t

ig. 9. RBS wave pattern (Rarefaction – Bottom step – Shock). Field labeling: L, R for Left and Right states, numbers for intermediate states.



Clearly, a good predictor solution can be obtained only by considering properly the effect of the bed step. The choice to
use a well-balanced solver, i.e. a solver that considers the influence of the step directly in the development of the solution, is
almost compulsory. Another advisable property should be the possibility to impose the needed constraints at an early stage
of the process and not at the end of it. Therefore, we borrowed the Generalized Roe solver developed in [18] for the mobile-
bed case and adapted it for the fixed bed case. In the following section we will present only the essential features of this
solver, as well as the novel parts specific to this work, referring the reader to the original work [18] for details on the phi-
losophy that underlies this approach.

5.2.1. The predictor step: the generalized roe solver
The Generalized Roe (GR) solver approximates (60) with the following linear RP:
@bU
@t þeJðUL;URÞ @bU@x ¼ 0

bUðx; 0Þ ¼ UL if x < 0
UR if x > 0

�
9>>=>>; ð61Þ
where eJðUL; URÞ is a constant matrix to be determined by imposing proper conditions, namely:
eJðUL;URÞ ¼ ðA0 þ A00ÞB�1 ð62Þ
where
A0ðWR �WLÞ ¼ FðURÞ � FðULÞ ð63aÞ
A00ðWR �WLÞ ¼ �D ð63bÞ
BðWR �WLÞ ¼ ðUR � ULÞ ð63cÞ
Matrices A0 and B can be determined as Jacobian matrices, with respect to the primitive variables W ¼ ðh;u; zÞ, of the
fluxes and of the conserved variable respectively, evaluated for suitable averaged value of the primitive-variable fW:
A0 ¼ @F
@W

����eW ¼
0 1 0

g~h� ~u2 2~u 0
0 0 0

0B@
1CA ð64Þ

B ¼ @U
@W

����eW ¼
1 0 0
~u ~h 0
0 0 1

0B@
1CA ð65Þ
where
~h ¼ hL þ hR

2
; ~u ¼ uL

ffiffiffiffiffi
hL

p
þ uR

ffiffiffiffiffi
hR

pffiffiffiffiffi
hL

p
þ

ffiffiffiffiffi
hR

p ð66Þ
while
A00 ¼
0 0 0
0 0 g hK � jzR�zL j

2

� �
0 0 0

0B@
1CA where K ¼

L if zL 6 zR

R otherwise

�
ð67Þ
We define ~km the mth eigenvalue of the matrix (62), eRm the right eigenvector associated with ~km and ~lm the wave strength
associated to the mth eigenvalue ~km (see Appendix C for detailed expression of these quantities). If we define the vector of the
indices of the ordered eigenvalues
I ¼
ð1;2;3Þ if ~k1 < ~k2 < ~k3 ) ~k1 < 0 < ~k3

ð2;1;3Þ if ~k2 < ~k1 < ~k3 ) 0 < ~k1 < ~k3

ð1;3;2Þ if ~k1 < ~k3 < ~k2 ) ~k1 < ~k3 < 0

8><>:

we can express the solution in fields 1 and 2 in the following way:
Ui ¼ UL þ
X
k¼1;i

½~l~R�IðiÞ
~921.044 166.507 Tm
(<1Tj
/T1_6 1 Tf
1.61.6(on)-233(the)34757 229.096 156.926 Tm
(3)Tj
/(if 16936.854.6hl�.25 1 Tf
8.3446 0(329.61.6(on)-233(the)34757 25003)Tj
/T1.6hf
8.3Tj
/T1_5 1 Tf
0.282 0 Td51wing)3774828.24.6a0 176)T

while the fluxes can be obtained by multiplying on the left the previous expression by e
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5.2.2. An entropy fix for the resonant case
When one of the genuinely non-linear field, namely the 1-wave or the 3-wave, is superimposed on the step contact

wave, we have the resonance phenomenon: a composite wave structure consisting of a rarefaction with a sonic point
situated on one of the sides of the step contact wave (see some examples in Section 6) appears in the solution of the
step RP.

It is well-known that any Roe solver, since it is based only on discontinuous solutions, leads to unentropic results in the
case of sonic rarefactions. Therefore, the GR solver presented in the previous section suffers, in the case of resonance con-
ditions, from the same drawback as in any other sonic conditions. In this particular case, the implementation of the classical
Harten and Hyman [9] entropy fix has been found to be extremely complicated and computationally expensive. Therefore,
we adopted an extremely simple fix suggested by the analysis presented in Section 4.

In a resonant case, the GR solver gives a solution with a supercritical condition on one side of the step, and a subcritical
condition on the other. With reference to Figs. 5(a) and (b) and 7(a) and (b), this solution corresponds to points belonging to
different branches of the GHL curves. This condition is possible but, owing to the continuation principle (or the monotonicity
criterion) it is not admissible. Therefore, in order to overcome these unentropic conditions, we impose that on one of the two
sides of the step contact wave, flow conditions are critical. But on which side must this condition be set? From Figs. 6 and
8(a) and (b) it is possible to deduce that admissible conditions with Fr ¼ 1 may exist only on the right of a positive step
(Fig. 6(b)), or on the left of a negative step (Fig. 8(a)). In both cases, we have critical conditions on the side of the step with
higher elevation. Therefore, our fix consists in setting critical conditions on the higher side of the step. Recalling that our
problem has 4 unknowns (depth and velocity on either side of the step) and considering that the previous condition gives
one relation, we need three other relations to close the problem. Two of them derive from the step GRH relations (Eq. 23)
while, for the last, we assume that a rarefaction connects the state on the higher side of the step (which could be left or right)
to the corresponding initial state of the Riemann Problem (i.e., UL or UR, respectively); the relevant equation is therefore the
flat-bed RI relation.

It should be noticed that such a fix does not use a modified version of the original Roe solver but it solves an SRP with an
approximated wave structure. Therefore it gives the exact solution when the actual wave structure matches the assumed
one; otherwise it provides only approximated solutions. In any case, it is able to rule out inadmissible conditions, and there-
fore succeeds in the main objective of the predictor step: providing the corrector step with the exact wave structure and a
good initial solution.
5.2.3. The corrector step
Once the approximated solution is evaluated, it is possible to determine the actual wave structure of the RP solution from

a comparison of the celerity of the 1- and 3-waves evaluated in the fields before and after the wave itself:
1-wave !
if k1

1 < k1
L ) Rarefaction

if k1
1 > k1

L ) Shock

(
ð69Þ

3-wave !
if k3

2 < k3
R ) Rarefaction

if k3
2 > k3

R ) Shock

(
ð70Þ
where ki
j is the ith eigenvalue evaluated in the jth field (with reference to Fig. 9 for fields labeling).

It is possible now to write the system of equations that defines the full SRP and in particular to determine the number of
unknowns of such system. Considering the example shown in Fig. 9, the predictor solution would provide an estimation of
the intermediate states U1 and U2 and would therefore tell us that the structure is RBS with a total of 5 unknowns, namely
ðh1; u1; h2; u2; s2Þ. The Corrector Step (CS) would solve the following relevant system:
uL þ 2
ffiffiffiffiffiffiffi
ghL

q
¼ u1 þ 2

ffiffiffiffiffiffiffiffi
gh1

q
ð71aÞ

h1u1 ¼ h2u2 ð71bÞ

h1u2
1 þ

1
2

gh2
1 ¼ h2u2

2 þ
1
2

gh2
2 þ D ð71cÞ

hRuR � h2u2 ¼ s2ðhR � h2Þ ð71dÞ

ðhRu2
R þ

1
2

gh2
RÞ � ðh2u2

2 þ
1
2

gh2
2Þ ¼ s2ðhRuR � h2u2Þ ð71eÞ
where Eq. (71a) expresses the constancy of the Riemann Invariant uL þ 2
ffiffiffiffiffiffiffi
ghL

p� �
across the 1-rarefaction connecting UL to

U1, Eqs. (71b) and (71c) express the step GRH relations (18–22) relating the states U1 and U2, and Eqs. (71d) and (71e)
are the flat-bed RH Eqs. (15) and (16) across the right-moving 2-shock, relating the states U2 and UR.

The system is then solved with an iterative Newton–Raphson method in terms of the primitive variables starting from the
initial guess deriving from the predictor step. Iterations stop at the required accuracy, which can be set by the user to the
value that is considered the optimal trade-off between accuracy and computational cost.
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Finally, the numerical fluxes before and after the step are:
F�0� ¼
FGRþCS

1 if ~k1 < ~k2 < ~k3

FL if ~k2 < ~k1 < ~k3

FGRþCS
2 if ~k1 < ~k3 < ~k2

8><>: ; F�0þ ¼
FGRþCS

2 if ~k1 < ~k2 < ~k3

FGRþCS
1 if ~k2 < ~k1 < ~k3

FR if ~k1 < ~k3 < ~k2

8><>: ð72Þ
where the superscript GRþ CS indicates that the fluxes result from the two steps, namely the Generalized Roe step ðGRÞ plus
the Corrector Step ðCSÞ.
6. Numerical applications

In order to check the effectiveness of the proposed approach, we considered a series of SRPs whose exact solution can be
obtained by an inverse procedure (see. e.g. [2,17]). The domain of the tests is divided into N computational cells of a constant
size Dx. The interval of the ith cell is defined by ½xi�1=2; xiþ1=2�where xiþ1=2 ¼ x0 þ iDx and the position of the center of the cell xi

is defined by ði� 1=2ÞDx. Let Dt be the time step and tn ¼ nDt a generic time. We indicate with Un
i the cell-average value of

the solution Uðx; tÞ for the ith cell at time tn. The bed step is positioned on the left side of the Mth cell, i.e. it is at position
xMþ1=2 ¼ 0. The update formula for cell M and M þ 1 is the following:
Unþ1
M ¼ Un

M þ
Dt
Dx

F�M�1=2 � F�ðMþ1=2Þ�
� �

Unþ1
Mþ1 ¼ Un

Mþ1 þ
Dt
Dx

F�ðMþ1=2Þþ � F�Mþ3=2

� �

where Fn

M�1=2 are evaluated with a standard solver while F�ðMþ1=2Þ� are given by a bed step solver. For all the other cells, the
update formula is the usual one (see flowchart in Fig. 10).

To evaluate the numerical fluxes at cell interfaces without bottom discontinuities, we used a classical Roe approach, while
in the case with bed discontinuities two different approaches were tested for comparison purposes. The first method consists
in using the full two-step approach ðGRþ CSÞ: fluxes F�ðMþ1=2Þ� are evaluated by means of (72) in which FL ¼ FM and FR ¼ FMþ1.
The second is obtained simply using the numerical fluxes resulting from the predictor approach plus the resonance fix ðGRÞ,
i.e. by using scheme (72) where the fluxes FGR

i (Eq. 68) are used instead of FGRþCS
i . This was done in order to check whether or
Initial Conditions

Evaluation of ΔΔΔΔt

Interface with
bed step?

Generalized Roe solver (GR)
+

Entropy Fix (for resonant cases)

Numerical Fluxes

1 step (GR)

2 steps (GR+CS)

Conservative Step (CS)

Update Variables

YES

NO
Loop over
Interfaces

Standard
Roe Solver

End of Simulation

Time Loop

Fig. 10. Flowchart of the numerical algorithm.



Table 1
List of the initial left and right conditions of the test cases.

Test Left Right

hL (m) uL (m/s) zL (m) hR (m) uR (m/s) zR (m)

RBS 5.0 0 0 0.9966 0 1
RBR 8.0 �2.0 0 5.0 7.1704 1
SBS 4.0 4.7500 0 1.0838 �2.1854 1
RRBR 6.0 �16.0 0 8.0 0 1
SBRS 4.0 7.0 0 1.0299 7.1290 1
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not (or, to what extent) the predictor solution can be used when quick (but less accurate) simulations are needed for prac-
tical purposes.

All the numerical solutions presented here have been obtained using a grid of 2000 cells; left and right initial conditions
for each problem are shown in Table 1. In the corrector step, the L1 relative error required to stop the iterations was set to
10�9. Here we present a systematic comparison between the exact solution, the numerical solution resulting from the pre-
dictor step only (GR) and the full algorithm (GRþ CS). These results are shown in Figs. 11–13; for clarity, only a fraction of the
2000 computational points is represented.

Test RBS: This case corresponds to a dam break over wet bed, i.e. initial conditions with left and right velocities equal to
zero and different water depths (with hL > hR). In this case, the solution of the Riemann Problem, is consti-
tuted by a left moving 1-Rarefaction, the bottom step discontinuity and a right-moving 2-Shock (assuming
that the left rarefaction does not span across the x-axis). A sketch of the wave structure is shown in Fig. 9.
Results are shown in Fig. 11(a). It can be noticed that the numerical results obtained using the two
approaches ðGRÞ and ðGRþ CSÞ, are nearly identical and both indistinguishable from the exact solution

Test RBR: In this case we have two rarefactions moving away from the step, one to the left and one to the right. Thus,
the solution of the Riemann Problem is given by a left-propagating 1-Rarefaction, the bottom step disconti-
nuity and a right-propagating 2-Rarefaction. Results are shown in Fig. 11(b). Again, the numerical results
obtained using the two approaches ðGRÞ and ðGRþ CSÞ are both indistinguishable from the exact solution.

Test SBS: In this case two shocks are moving away from the bottom step in opposite directions, and the solution of the
Riemann Problem is therefore given by a left-propagating 1-Shock, the bottom step discontinuity and a right-
propagating 2-Shock. Results are shown in Fig. 12(a). As in the two previous cases, the two approaches ðGRÞ
and ðGRþ CSÞ give numerical results in perfect agreement with the exact solution.
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Fig. 11. Comparison between exact and numerical solutions (top: g ¼ zþ h, bottom: u) at time t ¼ 8 s, in case: (a) RBS, and (b) RBR.
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Fig. 12. Comparison between exact and numerical solutions (top: g ¼ zþ h, bottom: u) at time t ¼ 8 s, in case: (a) SBS, and (b) RRBR.
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Test RRBR: This differs from the previous tests because of the presence of a resonant condition. The wave pattern is given
by a 1-Rarefaction propagating to the left, a left-propagating 2-Rarefaction and a composite wave made up of
a step contact wave and a right-propagating 2-Rarefaction spanning from the right state to the step. It must
be noted that, in accordance with the theory developed so far in the paper, flow conditions are critical to the
right side of the step (i.e., the side with the highest bottom elevation), while on the left side flow conditions
are those given by the step GRH relationship. Results for this problem are shown in Fig. 12(b). Contrary to the
previous cases, there are evident differences here between the two numerical solutions. Using the predictor
fluxes ðGRÞ, the model clearly fails to correctly simulate the flow to the right of the bottom step. This shows
that the fix we have introduced, although successful in avoiding unphysical flow conditions, does not lead to
the exact solution. On the other hand, using the two-step approach ðGRþ CSÞ, the model converges to the
exact solution. Therefore, the predictor achieves its primary aim, which is to provide an approximate solution
that allows the corrector step to converge to the exact solution.

Test SBRS: In this case, as in the previous one, the resonance phenomenon affects the step RP and the flow conditions are
critical to the right side of the step (i.e. the side with the highest bottom elevation). The flow is everywhere
from left to right, and the wave structure can be easily deduced from Fig. 13, where numerical and analytical
solutions are presented. As can be seen from the figure, the wave structure is clearly not well predicted by the
predictor step (GR) alone, but correctly captured by using the full algorithm (GRþ CS), which gives numerical
results identical to the exact solution.
6.1. Overall considerations

From the analysis of the previous numerical results it is possible to draw some general observations regarding the pro-
posed algorithm.

1. The full algorithm guarantees high accuracy in any flow conditions. In particular, unlike other approaches (see [4]), no
spurious oscillations are present near the step contact wave, either in the elevation or in the velocity values.

2. The accuracy of the solver can be tuned simply by adjusting the tolerance in the corrector phase. This gives it a great flex-
ibility allowing any desired accuracy to be obtained rather easily.

3. The number of iterations necessary in the corrector step is rather limited. In any simulation it did not exceed the value of
3 with the tolerance used in this work; this number can be easily reduced by simply increasing the tolerance, which
speeds up the algorithm but reduces the accuracy.

4. The GR solver can be used without the corrector step in any situation except those presenting the resonance phenome-
non. In this case at least one iteration is compulsory to obtain a solution with an acceptable approximation.
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5. It must be noted that incorrect solution around the step may affect the correctness of the solution in the whole domain
(see Fig. 13). Therefore, the step solver must have at least the same accuracy as the solver used elsewhere.

7. Conclusions

We have presented in this paper the solution of the Riemann Problem for the one-dimensional Shallow Water Equations
over a bed discontinuity from the theoretical and a numerical point of view. A deep analysis of the features of the contact
wave in nonconservative systems allowed us to show that unlike in standard conservative systems, RIs are generally not con-
stant across nonconservative contact discontinuities characterized by a speed independent from the variables of the prob-
lem. The application of this general result to the extended 1D SW system demonstrates that across the step contact wave the
energy is not conserved. In this way, we have provided a comprehensive mathematical description of the problem that does
not contradict the physical evidence regarding energy conservation and thus overcomes the contradictions so far present in
the literature that are discussed in the introduction. A thorough analysis of the mathematical properties of the step contact
waves, complemented by several figures representing the GRH relations, allowed us to obtain a clear and direct character-
ization of the features of this wave.

From a numerical point of view, we have presented an SRP solver whose accuracy can be extended up to the exact solu-
tion without excessive numerical burden. Its use, in conjunction with a standard first order Roe scheme for a horizontal bed,
furnished numerical results remarkably near to the exact ones in a series of test cases involving different types of SRPs. This
solver can also be easily embedded in any finite-volume, Godunov method.

Even though the theoretical and numerical framework for solving the SRP in a one-dimensional context has been
achieved, a large amount of work must now be devoted to collecting experimental data, in order to find a more correct rela-
tion expressing the step thrust term (20), and to verifying to what extent the SW approach can be representative of the actual
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physical problem. Moreover, it could be interesting to obtain the thrust term from suitable averaging of the fully 2D Reynolds
equations (or possibly of the simplified 2D Euler equations) and compare systematically the results that can be obtained
from different levels of approximations (for example in the way outlined by [14] for the case of a smooth obstacle). This
is the target of our future work on this topic.

Appendix A. Eigenstructure analysis of the SW system in terms of primitive variables

Considering system (7), its quasi-linear form in terms of primitive variables WT ¼ ðh;u; zÞ reads:
B
@W
@t
þ ðJW þHBÞ @W

@x
¼ 0 ð73Þ
where
B ¼ dU
dW
¼

1 0 0
u h 0
0 0 1

264
375; JW ¼

dF
dW
¼

u h 0
u2 þ gh 2hu 0

0 0 0

264
375
Multiplying on the left by B�1, system (73) can be rewritten as:
@W
@t
þ B�1JW þ B�1HB
� � @W

@x
¼ 0
The eigenvalues of this equations are given by the following relation:
det jB�1JW þ B�1HB� kIj ¼ 0
while the right eigenvalues are given by
ðB�1JW þ B�1HBÞeRk ¼ kk
eRk ð74Þ
As proved in [18], the previous eigenvalues are the same as can be obtained from the eigenstructure analysis in terms of the
conserved variables (Eq. 11); moreover, the relation between the respective eigenvectors is:
Rk ¼ BeRk ð75Þ
In detail, the eigenvectors are:
eR1 ¼
1

� 1
h

ffiffiffiffiffiffi
gh

p
0

264
375; eR2 ¼

1
� 1

h u

� 1
gh ðgh� u2Þ

264
375; eR3 ¼

1
1
h

ffiffiffiffiffiffi
gh

p
0

264
375
As far as the ICs are concerned, from Eq. (31) we have:
dsk

dW
d~sk

dn
¼ B

d~sk

dn
considering Eqs. (75) and (32) becomes:
B
d~sk

dn
¼ BeRk ) d~sk

dn
¼ eRk
This relation expresses the formal equivalence of the ICs in terms of primitive variables ~sk with the ICs in terms of conserved
variables sk. The ICs associated with the step contact wave k2 ¼ 0 can be obtained by integrating the previous expression:
~s2ðnÞ ¼
hðnÞ
uðnÞ
zðnÞ

264
375 ¼

hL þ n
hLuL
nþhL

zL � n� ðhLuLÞ2
2g

1
ðnþhLÞ2

þ ðuLÞ2
2g

2664
3775 ð76Þ
It can be noticed that the second equation derives from the mass conservation principle uh ¼ const ¼ q, where q is the dis-
charge per unit width, while the third equation derives from the energy conservation principle hþ u2

2g þ z ¼ const ¼ E where E
is the energy per unit weight of fluid. The first Riemann invariant associated with the k2-field is:
dheR2
1

¼ dueR2
2

dh
1
¼ du
� 1

h u
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which, after some manipulations gives
hu ¼ const ð77Þ
The second equation is
dheR2
1

¼ dzeR2
3

dh
1
¼ dz
� 1

gh ðgh� u2Þ
which, after some manipulations, and with the use of the other invariant, gives
hþ u2

2g
þ z ¼ const ð78Þ
Finally, it must be noted that the same RIs could be obtained by performing the same analysis in terms of the conserved
variables.

Appendix B. Contact waves in primitive-variable nonconservative systems

Theorem 1 can be also formulated in terms of the primitive variables W. The variation of ðF� SU� DÞ along ~s, with Ss ¼ kk,
becomes:
d
dn
ðF� SsUÞ ¼

dF
dW

d~sk

dn
� Ss

dU
dW

d~sk

dn
� dD

dn
¼ JW

eRk � kkBeRk � dD
dn

ð79Þ
Multiplying on the left Eq. (74) by B we obtain:
BB�1JW
eRk � kkBeRk ¼ �BB�1HBeRk

JW
eRk � kkBeRk ¼ �HBeRk
In order to have dðF� SsUÞ=dn ¼ 0, we must set
�HBeRk � dD
dn
¼ 0
which, after integrations, gives:
�
Z n

0
HBeRkdn ¼ D
Appendix C. Detailed expression of quantities used in the Step Generalized Roe solver

The eigenvalues of matrix (62) are:
~k1 ¼ ~u� ~c; ~k2 ¼ 0; ~k3 ¼ ~uþ ~c ð80Þ
with ~c ¼
ffiffiffiffiffiffi
gĥ

q
, where the averaged primitive values are already defined in (66). The relevant eigenvectors are:
eR1 ¼
1

~u� ~c

0

0B@
1CA; eR2 ¼

a23

0
~u2 � ~c2

0B@
1CA; eR3 ¼

1
~uþ ~c

0

0B@
1CA ð81Þ
where a23 is the component (2,3) of A00 (see 67), namely gðhK � jzR � zLj=2Þ where K ¼ L if zL 6 zR;R otherwise. Finally, the
wave strengths are:
~l1 ¼ dh
~k3�duh

2~c � a23dz

2~c~k1

~l2 ¼ dz
~k1~k3

~l3 ¼ � dh
~k1�duh

2~c þ a23dz

2~c~k3

8>><>>: where
dz ¼ zR � zL

dh ¼ hR � hL

duh ¼ hRuR � hLuL

8><>: ð82Þ
References

[1] F. Alcrudo, F. Benkhaldoun, Exact solutions to the Riemann problem of the shallow water equations with a bottom step, Computers and Fluids 30
(2001) 643–671.



G. Rosatti, L. Begnudelli / Journal of Computational Physics 229 (2010) 760–787 787
[2] N. Andrianov, Performance of numerical methods on the non-unique solution to the Riemann problem for the shallow water equations, International
Journal for Numerical Methods in Fluids 47 (2005) 825–831.

[3] A. Armanini, L. Fraccarollo, G. Rosatti, Two-dimensional simulation of debris flows in erodible channels, Computers and Geosciences 35 (2009) 993–
1006.

[4] R. Bernetti, V.A. Titarev, E.F. Toro, Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry, Journal
of Computational Physics 227 (2008) 3212–3243.

[5] V.I. Bukreev, A.V. Gusev, V.V. Ostapenko, Breakdown of a discontinuity of the free fluid surface over a bottom step in a channel, Fluid Dynamics 38 (6)
(2003) 889–899.

[6] A. Chinnayya, A.Y. LeRoux, N. Seguin, A well-balanced numerical scheme for the approximation of the shallow water equations with topography: the
resonance phenomenon, International Journal of Finite Volumes 1 (1) (2004) 1–33.

[7] T. Galloüet, J.M. Hérard, N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers and Fluids
32 (2003) 479–513.

[8] W.H. Hager, R. Bremen, N. Kawagoshi, Classical Hydraulic jump – length of roller, Journal of Hydraulic Research 28 (5) (1990) 591–608.
[9] A. Harten, J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, Journal of Computational Physics 50 (1983)

235–269.
[10] P.G. LeFloch, M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Preprint NI03024-NPA, Isaac Newton

Institute for Mathematical Sciences, University of Cambridge, UK, 2003.
[11] A.Y. LeRoux, Discretisation des termes sources raides dans les probl emes hyperboliques. In: Systemes Hyperboliques: Nouveaux Schemas et Nouvelles

Applications, EEcoles CEA-EDF-INRIA ‘Problemes Non Lineaires Appliques’, INRIA Rocquencourt, France, March 1998.
[12] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäusen Verlag, 1992.
[13] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002.
[14] B.T. Nadiga, L.G. Margolin, P.K. Smolarkiewicz, Different approximations of shallow fluid flow over an obstacle, Physics of Fluids 8 (8) (1996) 2066–

2077.
[15] C.M. Parés, M. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems, applications to shallow-water systems,

ESAIM:M2AN 38 (5) (2004) 821–852.
[16] C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM Journal of Numerical Analysis 44 (1) (2006) 300–

321.
[17] G. Rosatti, L. Fraccarollo, A well-balanced approach for flows over mobile-bed with high sediment-transport, Journal of Computational Physics 220

(2006) 312–338.
[18] G. Rosatti, J. Murillo, L. Fraccarollo, Generalized Roe schemes for 1D two-phase, free-surface flows over a mobile bed, Journal of Computational Physics

227 (2008) 10058–10077.
[19] S.B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics 199 (1989) 177–215.
[20] J. Smoller, Shock Waves and Reaction–diffusion Equation, second ed., Springer, New York, USA, 1994.
[21] J.J. Stoker, Water Waves, Interscience, NewYork, USA, 1957.
[22] E.F. Toro, Shock-capturing Methods for Free-surface Flows, Wiley and Sons Ltd., 2001.
[23] I. Toumi, A weak formulation of Roe’s approximate Riemann solver, Journal of Computational Physics 102 (1992) 360–373.
[24] J.G. Zhou, D.M. Causon, D.M. Ingram, C.G. Mingham, Numerical solution of the shallow water equations with discontinuous bed topography,

International Journal for Numerical Methods in Fluids 38 (2002) 769–788.


	The Riemann Problem for the one-dimensional, free-surface Shallow Water Equations with a bed step: Theoretical analysis and numerical simulations
	Introduction
	Mathematical description of the SW problem with a bed step
	Integral formulation
	The PDE system
	Eigenstructure analysis of the extended SW system

	Shock relations and the Generalized Rankine–Hugoniot equations
	The flat-bed case
	The discontinuous bed case


	Contact waves in nonconservative systems
	Conservative vs. nonconservative systems
	Integral curves and riemann invariants
	Linearly degenerate fields
	Properties of contact waves in conservative systems
	Properties of contact waves in nonconservative systems
	Contact waves in the step SW problem

	Characterization of the step GHL
	The parametric form of the GHL
	Positive step
	Negative step

	The numerical algorithm for the Step Riemann Problem
	The structure of the SRP solution
	A two-step numerical solver
	The predictor step: the generalized roe solver
	An entropy fix for the resonant case
	The corrector step


	Numerical applications
	Overall considerations

	Conclusions
	Eigenstructure analysis of the SW system in terms of primitive variables
	Contact waves in primitive-variable nonconservative systems
	Detailed expression of quantities used in the Step Generalized Roe solver
	References


